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ABSTRACT

The Buffon needle problem and somwe varfations
are used to illustrate classical statistical methods
of estimation and to lead into, and coantrast with,
the problems which arise when a sample of some random
structure is the data. The flavor of these pirroblems
15 conveyed largely by discussion of the simplest,

and most described, case, that of point processes.

Note: This technical report was originally delivered
as a Lecture at the Buffon Bicentenmary Symposium on
Geometaical Probability, Image Analysis, Mathematical
Steaeology and their rclevance to the deteamination of
BLological Structure, Paris, June 20-24, 1977.
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1. INTRODUCTION

The Buffon needle problem has its origins in gambling. But, un-
1ike card and dice games, it requires some geometry and calcuius.
Thus it was a bold step in generalizing the idea of mathematical
probability. The needle problem and minor variants have been studied
by many authors up to the present day as ; means of estimating «
statistically. More sensibly, however, they provide a means of in-
ferring the ratio of the length of the needle to the scale of the
regular network onto which it is thrown. And of course this is the
origin of modern methods for the sanp]inglstudy of geometric bodies.
Thus it seems most appropriate at this Symposium to begin my talk by
going over this work which used only quite standard statistical {deas.

However when the needle is replaced by a more general probe or
sampling window -- in other words, some set -- and the regular net-
work is replaced by a random structure, we must face statistical prob-
lems of quite a different character. They are akin to those met in
time series analysis which has a long history by statistical standards
but in which there i1s still some confusion between the exploratory,
model1ing and confirmatory aspects and a lack of communication betweer
probabilists and statisticians. The spatial problems are decidedly
wmore difficult. There are not so many explicit probability models to
get statistical experience with. One must consider the shape as well
as the size of sampling windows. The data has a more awkward form.
The second part of the lecture will therefore merely give some {dea
of these problems and their literature. Hopefully other speakers
will address them in detail. But it is clear that statistical geo-
metry or morphology is just beginning.




2. BUFFON PROBLEMS

The classical problem considers a parallel grid with spacing a
and a needle of length £ where £ <a. If the needle is tossed so
that its position and orientation are random, the probability p that
it cuts a grid line is given by

p=2L . (1)

"N

Uspensky (1937), Kendall and Moran (1963), for example, give proofs of

this and most of the results used below.
1
®
(tosses) yteld C cuts. Then X(C) = Binomial (n,p) where p = 24r.

Define ¢ = s T = f and suppose that n 1independent trfals
The statistical problems that arise are
(1) estimate ¢, 1.e., estimate «

(11) estimate r, {.e., estimate a {f £ is known

(111) test that r = o (known).
The most complete reference on (i) in this case and those given below
is Periman and Wichura (1975). 0ddly no one seems to have considered
(11) and (i11). Trivial though they are, they are the prototypes of
the real problems.

The 1ikelihood of the data when ¢ cuts are observed fis

(::)p"’(l-p)"'c and the number of cuts is a complete sufficient statis-

tic for p. Thus we may assert: among all functions f(c) such that
Ef(C) = p, for all p 1in (0,1), 1t is true that

var f(C) 2 var % =n p(l-p) . (2)

Thus the obvious estimator of p, p = C/n is, uniformly-in p, the




minimum varfance unbfased estimator of p.

If one knows r and wishes to estimate =, the same is true of
~ C - ﬁl
¢ = 35 0 var (o) = [F “ 1] . (3)
However 31 = 1/¢ 1is biased. If n is large, we may argue that
EGI-El[w,!—ﬂ
2
-0 , (3-
1 - ry +.(.L*L
111
| 1-01';‘-(-’-- }

+ X% &S N + e

"
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Further it follows from (3) that
var ;1= ;%? (;% - l) . (4)

Thus 1f one is set on estimating w this way and can "design the
experiment” one should take £ = g since this choice minimizes (4).
In this case var ;1 % 5.63/n. Lazzerini (1901) conducted such an
experiment with n = 3408 and found %, - v = 3 x 1077, As Kendall
and Moran (ibid.) suggest, he must have stopped when he noticed the
remarkable and fortuftous accuracy:

In fact we know ¢ and are more likely to want to know o. By
the same arguments used above, 4 = 2Len ,» and we will have

c
€ *+a as n -+« and

3
var (g) = 5-“-(2-'2- - }) ‘ : (s}




Again if we can choose the needle size we should try to make it
near to but less than a. Thus the effort to optimize may lead to
bias since (1) is false when £ > a. Trivially if n 1is large, a
is Gaussian so tests are easy to make.

Instead of a parallel grid, Laplace considered a rectangular
grid, the A 1lines being a apart, the 'B lines being b apart.
He showed that the probability that the needle cuts at least one line

is

28(a+b) - 22

Ta

) (6)

a fascinating formula whose direct derivation is tricky so that it
seems easier to get it from a more general Crofton argument. To

fl1lustrate my points here set a = b and

ll‘. -l
2R TR

Introducing the notation

Pxg * Prob(needle cuts a B line but not an A 1line),

PiE = Prob(needle cuts neither an A nor a B 1line),
etc., formula (6) is clearly 1 - Pgg - Further if

Fu = Prob(needle cuts an A 1line)
Pg * Prob(needle cuts a B 1{ine)

then
Pao = Ppg * Ppg = 2re
p' - PAB + Plh = 2v¢ ,

and
Pag *PaB * Prg *Prg- 1




These three equations plus (6) for 1 - PKF yield

" 2 = = -
Pag " "¢ » Prg = Pap r(2-r)¢ (7)
and for brevity we follow Periman and Wichura fa writing

Pg = 1 - (4r=rf)p = 1 - mo . (8)

Let n trials yield results (in an obvious notation)
N = {nggs "pg> "xpe gyl Then
Z(N) = 4-nomial (n; Ppas Ppaps Prgs Prp) -

Thus the l1ikelihood of the data is proportional to
"As Y} A8 "AB
L= Py 'S H B -
Defining
No =" # no cuts
1" "5t "B " # 1 cuts
Ny = npp = # 2 cuts
N

+ N, + N

0 1 2
and using (7) and (8), L may be written as
N N,+N 2N, +N N
L= (1-m¢) 0 o % ¢ 271 (a.p) 1, (9)

Thus i1f r 1s known, N5 or N, + N, is a complete sufficient
statistic for ¢ and L(ﬂ1+ﬂz) = Binomial(n, m¢) so the story of the
estimator of w follcws the previous pattern. The resulting estima-
tor 32 has, for n 1large, a variance equal to 0.47/n so that the
extra work in using a square grid yields an estimator which is 12

times as efficient as that for the parallel grid.




However to estimate r knowing =w 1{s quite different. The
practical method is to choose r to maximize the 1ikelfhood (9).
Setting 2 log L/ar equal to zero leads to the ecuation

N 2r-4 2N +N1 N

0 + 2 o whes & B (10)
1 4r-r§- " r 2-r
-T .

which must be solved iteratively to yield *. The standard theory of

maximum likelihood estimation gives us an asymptotic formula for ?.

2
var?--l/-(———gs——a “’L) (11
ar 2
r

and asymptotic normality of * so that tests can be made.

The rectangular grid follows the same pattern with
£ B ﬁ-. '2 = f s L 1s a function of r1 and r, which are esti-

mated by solving 3 log L/ar1 = 0, 3 log L/ar2 = 0. Other regular
networks do not introduce the need for further techniques.

Above we considered only the case of £ < a = b. The case when
£ 1s much greater than a is simple and instructive to consider.
Let then this long needle intersect the B 1lines at an angle 6.

Then @ 1{s uniformly distributed on (0,n/2). If we define

"A = § A lines cut = r cos 6 ,
'B = f§ B lines cut = r sin o , (12)
N = ¢# lines cut = r(cos 6 + sin @) ,

we have




2
W - B
ENA - fo r cos 6 de e E(NB) .

2

N - E(r2 + 2r° cos 0 sin 8) ,

" rz(l*,z-,) .

2
var N = r2(1+%- (%) )

dHence 1f we make n throws and find ¢ as the average number of

SO

ruts, it will be an unbiased estimator of E(N). Hence the estimatcr

of w that 1s suggested, following our ealifer work, is

A 4r
w =
3 c

and an easy calculation shows that
4

A e % var N
var w, =~
3w "
~ 0.0095
- ”

While this seems a great improvement, we will show below that one can
do better still with this experiment.
To estimate r from ¢ , the "natural® method is to set r = }E
A o r2 '2 2 6 '
with var r = o ;7 (1 b ;zi. This estimate too can be improved
because nefther is the maximum 1ikelihood estimator, as was true of

our first three examples.

Ot




From (12), N = vZ r cos (e - %} so that

Prob(N < k) = Prob(cos ¢ < k/r/2) where £(y) 1is uniform on

-1 _k
(-n/4, n/4). Let Y, = cos = —— . Then
0 2

Prob(N < k) = 2 Prob(v > vg) »

4 [n
'?(T“”ol'

so that the probability density of N at k 1{is the partial deriva-

(13)

tive of (13) with respect to k, namely
4 1

¥ Jer® - &k

Thus given counts kl.....k in n trials, their likelihcod is

1
Zr - ki

-3

4
]

provided rs all the ki's < /2 r, and zero otherwise. Thus the

maximum likelihood estimate of r is

re s /% max(kyseoonk ) o (14)

not r = wnc/4. It may be shown that the variance of r* {s of order
n2, not order n-! 1ike that for F. Thus for large n, r* is a
very much better estimator than r. This shows dramatically that the
usual practice in geometrical statistics of obtaining estimators by
equating theoretical and observed means may be very inefficient. So
much for the “"long needle." Other details may be found in Diaconis

(1976) and in a forthcoming monograph by H. Solomon.




Buffon's needle may be used to obtain a connection with a quite
different aspect of geometrical statistics. Let us analyze the toss-
ing of the needle. Suppose now that an origin is marked on one of tk
lines of the parallel grid and that the needle 1s thrown so that its
center rests on the plane a distance X from the marked line. Let

X(X) = Gaussian (0.02) so it has probability density
f(x) = (0/27) lexp(-x%/242) .

It is then clear that if Y 1{1s the distance from the center of the

needle to the nearest line below it,

Prob{x < Y s x + dx) = ] €(x - va)dx
V= =0 (15‘
= g(x)dx , say.

The density g{(x) is concentrated on (0,a) and g(x) is periodic,

period a. Thus we may write

g(x) = ,E gjexp(-2mijx/a) . (16)

j=-e

It 1s shown that (see Hartman and Watson (1974)) this density can be

very well approximated by

(2n15(x)) "lexp k cos (2nx/a) (17)
where x is a suitably chosen function of o and that by certain
randomizing an exact result may be obtained. One of the commonest
distributions for describing non-uniformly distributed angles (which
we would need if we wished to give the needle a preferential oriente-~

tion) is the von Mises distribution
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(Zwlo(x))'Iexp x cos 0 ., (18}

OQur final two examples lead into random structures. Suppose tha
the spacings of the parallel grid are identically and independentiy
distributed (I.I.D.) with some density function h(a) which is zero

when a < as- Consider a needle of length £ < ag tossed at random.

Then
Prob(center of the needle
falls in a space, ah({a)da
a < space < a + da) = —m—
£bah(a)da
ah(a)da
E(a) :
Since
Prob(cut|space a) = % % ’
Prob(cut) = [ % % -gﬂé%%%ﬁ
%
e
m E(a)

Thus by repeating this experiment the only thing we can learn about
the spacings 1s E(a). There is, for example, no way one can check
whether they are 1.1.0. This would require a long needle.

Thus let us consider an infinitely long needle and suppose that
we could know, after it is tossed at random onto an arbitrary para-
1lel grid, the sequence of spaces on the needle between i1ine cross-
ings, (’1}’ If the needle makes an angle @ (which we do not know)

and the grid spacings are a, then a; = sy sin 6, for all positive

A A -
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and negitive integers 1. From only Llhe sequence {31} we can check
ail nroperties of the {“1} sequence thai do not depend upon scale,
e.G., that §t is 1.1.D., stationary, etc.

The cut points on the needle form a Point Process in one diman-

siorn. The discussion of Point processes in space is the largest
aspect of geometric probability and statiitics in the modern sense,

the topic to which we now turn.

3. MWRAY IS STATISTICAL GEOMETRY?

Everyone 1s fairly clear what 1is meant by geometry but
statictics is less well defined. It has a number of facets -
(4) exploring dcta for regularities, i.e., patterns; (fi) estimating
"nopulation" characteristics from a sample; (1i1) testing hypotheces-
(iv) designing samplirg plans to be effective and efficient (usually
by including 2 random element).
Probability mcdels enter (i) to (iv) in several ways:
a) by a scientific mechanism or model,
b) by assumption,
¢) via 2 random sampling plan,
and to different degrees. In (1) they may not enter explicitly at
all.
In statistical geometry our data will be a sample from some geo-
metrical “population."
Such definitions do not convey much, so we now give some exampls
of problias and the groups that pursue them. (A) Grenander's books
on "Pattern Synthesis® (1976) cover a vast area in a novel way not

recpresented at all at this Symposium, and I think they are of basic

e I e e e e
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importance. He has developed an abstract way of generatfng and distort-
ing patterns and then restoring them. The latter is of course statis-
tical. He gives a wealth of diverse examples; one of the simplest

is discussed below. (B) Classical problems such as may be found in
the Kendall and Moran (1963) bock. (C) The publications of the
Fontainebleau School of Mathematical Morpﬁology represent a different
line again, Their major achievement seems to me to be the wedding of
the image analyzer and mathematical description of the objects
scanned. While much practical work is done, the publications deal
more with the mathematical theory than with the statistical aspects.
(D) The Stochastic Geometry pursued in Cambridge by D. G. Kendall
(see, e.g., Harding and Kendall, 1974) and others overlaps theoreti-
cally with the French School but has, it seems, purely mathematfical
motivations. Like so much of this literature, it has not been re-
duced tc a level of mathematical simplicity for practical statistical
use. (E) The Point Process literature, stemming from Bartlett (see,
€.9., 1963, 1964, 1976) originated irn practical statistical problems

and mainly in one dimension. It is now pursued at a highly mathe-

matical level by Krickeberg (1977) and other Europeans in many dimen-
sfons. Earlier practical work in Forestry, especially Matern's (1960)
has led to many papers -- see, €.9., the issuesof Biometrika.
Ripley's recent papers (1977a, 1977b) have a combination of theory
and practice and extensive bibliographies.

While there are many mechanisms for generating point processes
in time, the few that do so in space are summarized by Ripley (1977a2),
for example. The mnain emphasis, in line with second ordgr stationary

processes, 1s che definition and estimation of functions that control
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the enhancement or inhibition of neighboring points. Here, as in timc
series analysis, there is a large exploratory element. Even if therc
were parametric models, it would rarely be possible to write down the
likelihood of the data so that the time-honored statistical methods
fllustrated earlier cannot be used. Computers are essential for al-
most all calculations, unlike the Buffon ﬁrob\e-s. e.g., variances
must usually be found by simulating.

In practice we will often want random sets, rather than the
Poisson fields of points, lines, flats, etc. that are most often
discussed. In his 1967 book Matheron made one of the early modeis
that can be dealt with easily -- the Boolean scheme. Here [.1.D.
copies of a random set K1 are attached to 2 Poisson field of points

fx1|X1€x} in a vector space to obtain the random sot

A= U (K; + x;). Such a set is intuitively stationary, f.e.,
X, EX
i

spatially homogencous though not necessarily fsotropic. If we know,
for any fixed set B,

q(8) = Prob(kMB = 9)
then

Prob(AMB = §) = up{-l!'(l-q(hO)dC} (19)
R
where A 1is the intensity of the Poisson process. In this Symposium

Coleman went further in this construction tham (19) which is the zero
term of a Poisson distribution.

Time series analysis is about 100 years old. It began as a
practical endeavor, became very mathematical and it 1s only recently

that practical books and programs have been readily available. The

o el
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time lag for this subject could be greatly shortened if theoreticians
would make the effort to write for practical users and not only for
other mathematicians.

We conclude with the simplest instance of problems in Grenander's
book (ibid.). It fllustrates (1) how a finite window is different
from a finite sample of 1.1.D. observations, (ii) the use of Fourier
analysis. It is the restoration of a 1inear lattice whose points
have been independently displaced. The complete set of points is
X, = a*vE+n (v = .o <30 8, 35 ..s)

v
where a 1s a phase, £ = the lattice spacing (unknown) and n is

v
the noise. The window is the interval (O,L). When the noise is small
with respect to L, almost all the points that should be in (0,L) will
be there and no two points will have their true order inverted. Then
we have an ordinary regression problem in estimating a and §.
When the noise is not small, successive X points may not have suc-
cessive indices and the "wrong"” points may be in the window -- this
illustrates point (i). (This model is essentially the same as that
set up by 0. G. Kendall (1974) to detect a unit of measurement fn an
archeologfical site.)

Here one automatfcally thinks of Fourier analysis. To save time,
set a = 0 and define,

-1 i X, 20
¢(w) int(o.uexp X, (20)

n(w) = Eo(w)

L
= ll_- Io exp(iwx)p(x)dx,

1
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where
p(x) = £ f(x - vg),
v
f(x) = density of the noise n
and
p(x) = f Py exp(-2mik/g).
Then exp[&u - Z%E}{E] -1
m(w) = 2 Py X
il{w - 2%54
As L + =,

m(w) + 0, w $ multiple of 2rk/E
TP u = multiple of 2wk/E .

Thus we would hope to see a pattern of peaks near the points 2wk/E
from which we would first try to see if there is a pattern, and 1f so

to cstimate E£.

var ¢(w) - % % [E - If*(u)lf]

where f* 4s the Fourier transform of f so that

et f "H‘k‘] .
Thus var(e(w)) may also help us lcarn about the noise since this is

governed by f.

The same computation with a Poisson process leads to

E(¢) = 2 1“ ; =1 s vVar ¢ = % » & very different picture also

seen with all renewal processes. Thus ¢ does n;t differentiate be-
tween stationary point processes but one hopes that the variance migh
If we define ;

S ————————. - — o I S s ’ L
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N(x) = # points in (0,x) ,
we have
1 L
oo) = L[ expliuxianix)
0

lo(w)|? = :12- f:[exp(1w(x-y).)dﬂ(x)du(y) :

Assume with Bartlett (1976) that
E(dN(x))z = Adx

. (21)
EAN(x)dN(y) = {2A° + W(x-y)ldxdy .

If MW(e) 1n (21) is identically zero, the points are Poisson. Let
W(v) = W(-v). It 1s clear that §f W(v) 1is positive, a point at y
means that there is, relative to the Poisson process, more chance of
having a point at y + v, i.e., enhancement. Negative values mean

ifnhibition. Now

Ele]? -~ e A2+ %ru(v)exp(iuv)dv (22)

which verifies our notion that knowledge of |¢|z should yield in-
formation about the function M(v).

In this use of Fourier analysis one should note that the F.F.T.
cannot be used; it i1s hard to adjust for bias and finfte L and hard
to find the varfance of IQIZ. even in R'. The vagueness in these
last two paragraphs is to some extent unavoidable. When dealing with
unknown functions, one simply has to use judgment, try various tricks
with the computer -- there cannot be any simple and apparently clear

cut methods of the t-test type.
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